CALCULATOR-FREE

35% (52 Marks)

Section One: Calculator-free

This section has **eight (8)** questions. Answer **all** questions. Write your answers in the spaces provided.

Working time for this section is 50 minutes.

Question 1

(4 marks)

A function has a stationary point at (-2, 3) and is such that $f'(x) = 16 + kx^3$.

Determine the constant k and hence an equation for f(x).

3

35% (52 Marks)

Section One: Calculator-free

This section has **eight (8)** questions. Answer **all** questions. Write your answers in the spaces provided.

Working time for this section is 50 minutes.

Question 1

(4 marks)

A function has a stationary point at (-2, 3) and is such that $f'(x) = 16 + kx^3$.

Determine the constant k and hence an equation for f(x).

$$16 + k(-2)^{3} = 0$$

$$8k = 16 \implies k = 2$$

$$f'(x) = 16 + 2x^{3}$$

$$f(x) = 16x + \frac{x^{4}}{2} + c$$

$$3 = 16(-2) + \frac{(-2)^{4}}{2} + c$$

$$3 = -32 + 8 + c$$

$$c = 27$$

$$f(x) = 16x + \frac{x^{4}}{2} + 27$$

3

METHODS UNITS 3 AND 4	8	CALCULATOR-FREE
Question 6		(7 marks)
Let $f(x) = x^2 e^{2x-1}$.		
a) Determine the exact value of $f'(1)$.		(3 marks)

(b) Use the increments formula $\delta y \approx \frac{dy}{dx} \times \delta x$ with x = 1 to estimate f(1.02). (4 marks)

Question 6

CALCULATOR-FREE

(7 marks)

(3 marks)

Let $f(x) = x^2 e^{2x-1}$.

(a) Determine the exact value of f'(1).

$$f'(x) = (2x)(e^{2x-1}) + (x^2)(2e^{2x-1})$$
$$f'(1) = (2)(e) + (1)(2e) = 4e$$

(b) Use the increments formula $\delta y \approx \frac{dy}{dx} \times \delta x$ with x = 1 to estimate f(1.02). (4 marks)

When
$$x = 1$$
, $\frac{dy}{dx} = 4e$ and $\delta x = 0.02$.
 $\delta y \approx \frac{dy}{dx} \times \delta x$
 $\delta y \approx 4e \times 0.02$
 $\approx 0.08e$
 $f(1) = e$
 $f(1.02) \approx e + 0.08e$
 $\approx 1.08e$

2. (16 marks)

(i)
$$f(x) = ln\left(\frac{x^2 - 3}{1 + x}\right)$$
 (2)

(ii)
$$g(x) = \frac{e^{\sin(x)}}{\cos(x)}$$
 (3)

(iii)
$$h(x) = e^x \times ln(x^2)$$
 (2)

_

(b) (i) Given
$$g(x) = \sqrt{sin(x)}$$

show that $g'(x) = \frac{cos(x)}{2\sqrt{sin(x)}}$. (2)

(ii) Hence determine
$$\int -\frac{3\cos(x)}{\sqrt{\sin(x)}}dx$$
 (2)

(c) Find
$$2\int_{0}^{4} (1-f(x)) dx$$
 given $\int_{0}^{10} f(x) dx = -6.4$ and $\int_{4}^{10} f(x) dx = 2.3.$ (2)

(d) Given
$$r = \sqrt{t}$$
, $t = 4x$, $x = cos(\theta)$
find an expression for $\frac{dr}{d\theta}$ as a function of θ . (3)

Question 7

METHODS UNITS 3 AND 4

(8 marks)

A small storage tank, initially holding 20 L of water, is being filled so that the rate of change of volume of water in the tank *t* minutes after filling began is given by $\frac{dV}{dt} = \frac{10t}{t^2 + 1}$ for $t \ge 0$, where *V* is the volume of water in the tank, in litres.

(a) Use calculus to show that the tank is filling at the fastest rate after exactly 1 minute. (3 marks)

(b) Determine an expression for *V* in terms of *t*.

(3 marks)

(c) The tank has a maximum capacity of 80 litres. Determine an exact expression for the time it will take to reach this capacity. (2 marks)

$$10t^{2} + 10 - 20t^{2} = 0$$
$$10 - 10t^{2} = 0$$
$$t^{2} = 1 \implies t = \checkmark, 1$$

(b) Determine an expression for *V* in terms of *t*.

$$V = \int \frac{10t}{t^2 + 1} dt$$

= $5 \int \frac{2t}{t^2 + 1} dt$
= $5 \ln (t^2 + 1) + c$
 $t = 0, V = 20 \implies c = 20$
 $V = 5 \ln (t^2 + 1) + 20$

The tank has a maximum capacity of 80 litres. Determine an exact expression for the time (C) it will take to reach this capacity. (2 marks)

> $5\ln(t^{2}+1)+20 = 80$ $\ln(t^{2}+1) = 12$ $t = \sqrt{e^{12} - 1}$ minutes

(a)

V is the volume of water in the tank, in litres.

Use calculus to show that the tank is filling at the fastest rate after exactly 1 minute. $J^2 U = (10)(J^2 + 1) = (10J)(2J)$

$$\frac{d^2 V}{dt^2} = \frac{(10)(t^2 + 1) - (10t)(2t)}{(t^2 + 1)^2}$$

$$10t^2 + 10 - 20t^2 = 0$$

$$10 - 10t^2 = 0$$

$$t^2 = 1 \implies t = 1, 1$$

9

A small storage tank, initially holding 20 L of water, is being filled so that the rate of change of

volume of water in the tank *t* minutes after filling began is given by $\frac{dV}{dt} = \frac{10t}{t^2 + 1}$ for $t \ge 0$, where

Question 7

(8 marks)

(3 marks)

(3 marks)